Advertisement

Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.

Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2. Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.

cosθ

Yorum Gönder

0 Yorumlar